India's largest platform and marketplace for AI & Analytics leaders & professionals

Sign in

India's largest platform and marketplace for AI & Analytics leaders & professionals

3AI Digital Library

Combining the power of Generative & Predictive AI

3AI April 12, 2024

Featured Article:

Author: Shuvajit Basu

GenAI has taken the world by storm. I certainly don’t have to outline the numerous possibilities it brings to bear. Both GenAI and Predictive AI have their share of strengths andbopportunities. However, if we can combine the power of these Generative models with Predictive AI/ML models, we might be able to do something more transformative.

Let us take a few examples to corroborate this point.

First, if a user were to interact with a conversational AI interface to check out what could be ‘some choices for an evening wear in a formal get together’, the GenAI response would be the same for any user who would type this prompt. However, if this prompt were to be augmented with the same user’s likings, for example her preference for a certain style, brand, price, etc. the response would be more personalized for her and needless to say would seem more relevant and thereby translate to higher engagement.

Similarly, in ecommerce search, a search query would return the same set of search results regardless of the user. However, if we were to layer in user tastes and preferences, the results will differ considerably from user to user. While this has been in practise before the advent of GenAI; companies experimenting with GenAI search esp. in the case of theme-based search, would apply similar principles. Suppose a user is looking for items to go along with a ‘IPL watch party’. In this case, the query would be augmented with user’s preference such as a specific brand of beverage or chips or even healthy food options and return results from various categories that is relevant to the theme.

In the same vein, as GenAI continues to get adopted by Marketeers to design their campaigns with specific creatives and copies targeted at a certain profile/cohort of users, the same can be extended to n=1, whereby user features can be augmented to the system prompt to design very specific user level campaigns.

All of the above assume that there is enough and rich user-level data to make a difference. Clearly, the above examples illustrate that GenAI and Predictive AI complement each other and not necessarily compete against each other. While Generative models are trained on world knowledge, there is a need to complement with specialized or domain knowledge. Also, above examples illustrate that it’s not only retrieval that matters but retrieval & selection that makes the response for each user and each of their interactions very personalized. Hence, one needs to understand the strength and limitation of Generative & Predictive AI to use one or both effectively.

Title picture: freepik.com

    3AI Trending Articles

  • Creating the Bridge of Translation between AI Technologists and Business

    Featured Article: Author:  Abhishek Tandon, Director, Customer Success for Fosfor, LTIMindtree Like we saw in the previous article “Crossing the AI Adoption Chasm“, there is a big gap in the objective of the technologists driving the AI project and the business user seeking value from it. This gap is causing major adoption issues as both […]

  • Process Mining and Task Mining fuels Automation across the Enterprise

    Featured Article: Author: Prakash Narayanan, Head of RPA & Intelligent Automation, Cyient Every business is a collection of core processes. Processes are the foundational infrastructure and form the basic element of business operations. In 1911, Frederick Winslow Taylor became the first person to study and optimize workplace productivity. His monograph ‘The Principles of Scientific Management’ […]

  • Evolution of Biometric Recognition Systems with AI

    Featured Article: Author: Kiranjit Pattnaik, MiQ What are biometric recognition systems Biometric recognition systems are computer-based systems that use an individual’s physical characteristics, such as their fingerprint, voice, face or any other part of the body, to authenticate their identity and grant access to secure areas, systems, or services. They are used increasingly as an […]

  • Augmenting AI to set the right sales targets

    Author: Abhishek Bhadra, AVP – Platforms & Offerings (Building AI products for Sales & Commercial value chain with domain expertise in CPG& Retail, Manufacturing & Aftermarket Services), Genpact | LinkedIn – https://www.linkedin.com/in/abhishekbhadra/ Setting the right target  Target setting for the sales force is an age-old problem which is nonlinear and multivariate in nature. If the target is […]