India's largest platform and marketplace for GCCs, AI & Analytics leaders & professionals

Sign in

India's largest platform and marketplace for GCCs, AI & Analytics leaders & professionals

3AI Digital Library

IoT devices at risk from Amnesia:33

3AI December 17, 2020

 

A new series of vulnerabilities dubbed Amnesia:33 puts millions of IoT devices at risk of being compromised.

Security researchers from Forescout disclosed the 33 vulnerabilities today. The flaws are found in four open-source TCP/IP libraries used in the firmware of products from over 150 vendors.

According to the researchers’ estimates, millions of consumer and enterprise IoT devices are at risk from Amnesia:33 vulnerabilities.

The affected libraries are uIP, FNET, picoTCP, and Nut/Net. Manufacturers have used these libraries for decades to add TCP/IP support to their products.

Here are the number of vulnerabilities discovered in each library:

  • uIP – 13
  • picoTCP – 10
  • FNET – 5
  • Nut/Nut – 5

uIP, the most vulnerable library, was also found to be used in the highest number of vendors.

Forescout also analysed the following libraries but did not find any vulnerabilities: lwIP, CycloneTCP, and uC/TCP-IP. 

Due to the prevalence of these libraries, just about every type of connected hardware is impacted by Amnesia:33—from SoCs to smart plugs, from IP cameras to servers.

Unlike the previously disclosed Ripple20 vulnerabilities, Amnesia:33 primarily affects the DNS, TCP, and IPv4/IPv6 sub-stacks.

Ripple20 and Amnesia:33 vulnerabilities both predominately consist of Out-of-Bounds Read, followed by Integer Overflow.

IoT devices (46%) represent the highest number of affected device types, according to Forescout’s research. This is followed by OT/BAS and OT/ICS at 19 percent, and then IT at 16 percent.

    3AI Trending Articles

  • Improving Customer Experience – AI/ML Driven Issue Resolution

    Author: Ashish Vashishta, VP – Technology, eClerx Customers across industries typically face issues with their purchased products/services. A troubleshooting system which can use latest AIML technologies to resolve these issues faster and more effectively can lead to a much better customer experience. As an example, a customer may have purchased a bundled product offering – […]

  • Upskilling into AI

    Featured Article: Author: Puneeth B C, Computer Vision Specialist, Airbus India AI has penetrated our lives in a way that sometimes we don’t even realize. Devices and applications we use, are becoming smarter every day. An AI system knows more than what we know of ourselves. It is faster and more accurate than us in […]

  • AI Operations: Think Software Development, not Data Science

    Featured Article: Author: Kuntal Hansaria, Associate Partner – AI, Analytics & Digital, IBM AI Governance includes aspects of Explainability (explaining how a model is working) & AI/ML Operations (scaling model development, management & deployment). While Explainability gets lot of attention, aspects of AI/ML Operations are often ignored. However, without AI Operations, an organization can never […]

  • Data Science/Machine Learning and Software Quality

    Featured Article: Author: Biju Kalleppilli, Director-Performance Engineering, SAP Labs India Endless possibilities of data science applications in Software quality are probably an underrated one. At various stages of product testing life cycle, huge amount of data is generated and remain unexplored., primarily because the top management often become happy by looking at the quality metrics […]