India's largest platform and marketplace for GCC & AI leaders and professionals

Sign in

India's largest platform and marketplace for GCC & AI leaders and professionals

3AI Digital Library

Minimizing Policy Attrition

3AI August 16, 2020

Leading Life Insurance Company In Japan

Problem Statement

  • A high attrition in the customer base due to competition and miss-selling (45% is overall lapse rate)
  • Expectation was to build an approach to retain policies and to set up an early warning system to identify a potential attrition cases to prevent further revenue leakage

Analytics Led Approach

  • Attrition trends in the data over the years were analyzed and an approach was designed to provide a solution to contain further revenue leakage
  • Predictive attrition model was built to predict the propensity of policies to attrite
  • Given are high level process steps which were followed :
    • Data Load Exploration
    • Model variable Creation
    • Analytical Model Development
    • Business rules

Business Impact

  • Raw data was mined, and a methodology was built for developing a predictive attrition model to provide a probability score to influence the decisions to follow the case by the customer.
  • Model output was segmented to optimize the approach to follow the case and provided insights to treat each policy based on the segmented matrix Re-evaluate;Retain;Grow;Protect– for example, Retain is the quadrant high value and high risky policy, retaining such policies will optimize the effort as well as cost
  • Primary users, retention team were provided with insights for customer retention..

Critical Success Factors

  • 20% of the in-force portfolio has been identified with 69% of the premium to be at risk of attrition (Approx. $ 1.3 BN premium at risk)
  • Formulated a growth strategy to retain existing customers as well as grow their business
  • Integrated attrition prediction with every customer touch point system through a web service

    3AI Trending Articles

  • Emerging role of Generative AI for Businesses

    Featured Article: Author: Rajan Gupta, VP & Head of Research & Analytics, Analyttica Datalab Artificial intelligence (AI) has revolutionized the way businesses operate, and Generative AI (GAI) is quickly becoming a hot topic in this field. Generative AI is the technology behind applications that can produce new content, such as images, sounds, and even text. […]

  • Google investigates ethical AI team member over sensitive data handling

    Google’s diversity efforts have been questioned by employees and adds to years of angst, including several resignations and firings in the AI department. Alphabet Inc’s Google is investigating a member of its ethical AI team and has locked the corporate account linked to that person after finding that thousands of files were retrieved from its […]

  • AI Operations: Think Software Development, not Data Science

    Featured Article: Author: Kuntal Hansaria, Associate Partner – AI, Analytics & Digital, IBM AI Governance includes aspects of Explainability (explaining how a model is working) & AI/ML Operations (scaling model development, management & deployment). While Explainability gets lot of attention, aspects of AI/ML Operations are often ignored. However, without AI Operations, an organization can never […]

  • POV: Executive’s guide to build GenAI COE Effectively

    Featured Article Author: Mausam Deb (Healthcare & Life Science – AI Leadership Consultant) Generative AI (aka LLM) is no less than a rage for the last few years. The democratization of technology achieved by OpenAI through its GPT-3.5 model is remarkable. Market size of GenAI is growing in leaps and bounds. Every company in the […]