India's largest platform and marketplace for GCC & AI leaders and professionals

Sign in

India's largest platform and marketplace for GCC & AI leaders and professionals

3AI Digital Library

Minimizing Policy Attrition

3AI August 16, 2020

Leading Life Insurance Company In Japan

Problem Statement

  • A high attrition in the customer base due to competition and miss-selling (45% is overall lapse rate)
  • Expectation was to build an approach to retain policies and to set up an early warning system to identify a potential attrition cases to prevent further revenue leakage

Analytics Led Approach

  • Attrition trends in the data over the years were analyzed and an approach was designed to provide a solution to contain further revenue leakage
  • Predictive attrition model was built to predict the propensity of policies to attrite
  • Given are high level process steps which were followed :
    • Data Load Exploration
    • Model variable Creation
    • Analytical Model Development
    • Business rules

Business Impact

  • Raw data was mined, and a methodology was built for developing a predictive attrition model to provide a probability score to influence the decisions to follow the case by the customer.
  • Model output was segmented to optimize the approach to follow the case and provided insights to treat each policy based on the segmented matrix Re-evaluate;Retain;Grow;Protect– for example, Retain is the quadrant high value and high risky policy, retaining such policies will optimize the effort as well as cost
  • Primary users, retention team were provided with insights for customer retention..

Critical Success Factors

  • 20% of the in-force portfolio has been identified with 69% of the premium to be at risk of attrition (Approx. $ 1.3 BN premium at risk)
  • Formulated a growth strategy to retain existing customers as well as grow their business
  • Integrated attrition prediction with every customer touch point system through a web service

    3AI Trending Articles

  • CxOs’ guide to achieve “escape velocity” for NextGen approaches!

    Featured Article Author: Vivek Mahendra, Managing Partner, Vivikta Advisory Prelude This is an Enterprise Architect’s perspective on the approach to scale the NextGen Solutions (read, AI/Generative AI/LLMs/Deep Learning led business solutions). A part of the 3 Point-of-View Thought Leadership series, this article focuses on the two foundational aspects – Leadership Archetypes its impact and learnings […]

  • Online learning will pave the way for a digital future

    Online learning has emerged as a critical tool that promises the potential to prepare business and professionals for a digital future. While skilling has become a hot trend in the current job climate, professionals should know that simply having basic digital skills won’t cut it because disruptive digital skills are now a necessity, not a […]

  • Driving AI Adoption: An 8-Step Blueprint for Your Team’s Success

    Featured Article: Author: Ganes Kesari, Innovation Titan A Telecom major was grappling with high customer attrition. The firm was one of the largest Telecom companies in the world and a market leader in Asia. The marketing team’s heuristics-driven approach to customer retention was dated and ineffective. Reviewing the business performance in a weekly huddle, the […]

  • Understanding Language Model Evaluation Metrics: A Comprehensive Overview

    Featured Article: Author: Mradul Jain, AB InBev Large language models, such as GPT, Llama, Bard, etc. have gained immense popularity for their ability to generate coherent and contextually relevant text. Evaluating the performance of these models is crucial to ensure their reliability and utility. To accomplish this, a range of metrics have been developed. In […]