India's largest platform and marketplace for GCC & AI leaders and professionals

Sign in

India's largest platform and marketplace for GCC & AI leaders and professionals

3AI Digital Library

Minimizing Policy Attrition

3AI August 16, 2020

Leading Life Insurance Company In Japan

Problem Statement

  • A high attrition in the customer base due to competition and miss-selling (45% is overall lapse rate)
  • Expectation was to build an approach to retain policies and to set up an early warning system to identify a potential attrition cases to prevent further revenue leakage

Analytics Led Approach

  • Attrition trends in the data over the years were analyzed and an approach was designed to provide a solution to contain further revenue leakage
  • Predictive attrition model was built to predict the propensity of policies to attrite
  • Given are high level process steps which were followed :
    • Data Load Exploration
    • Model variable Creation
    • Analytical Model Development
    • Business rules

Business Impact

  • Raw data was mined, and a methodology was built for developing a predictive attrition model to provide a probability score to influence the decisions to follow the case by the customer.
  • Model output was segmented to optimize the approach to follow the case and provided insights to treat each policy based on the segmented matrix Re-evaluate;Retain;Grow;Protect– for example, Retain is the quadrant high value and high risky policy, retaining such policies will optimize the effort as well as cost
  • Primary users, retention team were provided with insights for customer retention..

Critical Success Factors

  • 20% of the in-force portfolio has been identified with 69% of the premium to be at risk of attrition (Approx. $ 1.3 BN premium at risk)
  • Formulated a growth strategy to retain existing customers as well as grow their business
  • Integrated attrition prediction with every customer touch point system through a web service

    3AI Trending Articles

  • IoT devices at risk from Amnesia:33

      A new series of vulnerabilities dubbed Amnesia:33 puts millions of IoT devices at risk of being compromised. Security researchers from Forescout disclosed the 33 vulnerabilities today. The flaws are found in four open-source TCP/IP libraries used in the firmware of products from over 150 vendors. According to the researchers’ estimates, millions of consumer and […]

  • Microsoft Announces Limited Access to its Custom Neural Voice

    Microsoft announced limited access to its neural text-to-speech AI called Custom Neural Voice. The service allows developers to create custom synthetic voices. . The Custom Neural Voice is a Text-to-Speech (TTS) feature of Speech in Azure Cognitive Services that allows users to create a one-of-a-kind customized synthetic voice for their brand.  Since the preview last year in September, the […]

  • Using AI to Outwit Malicious AI

    Robust Intelligence is among a crop of companies that offer to protect clients from efforts at deception. IN SEPTEMBER 2019, the National Institute of Standards and Technology issued its first-ever warning for an attack on a commercial artificial intelligence algorithm. Security researchers had devised a way to attack a Proofpoint product that uses machine learning to identify spam emails. The system produced email headers […]

  • Way to make object-recognition models perform better

    Adding a module that mimics part of the brain can prevent common errors made by computer vision models. Computer vision models known as convolutional neural networks can be trained to recognize objects nearly as accurately as humans do. However, these models have one significant flaw: Very small changes to an image, which would be nearly […]