Digital Business, which primarily brings an unprecedented convergence of people, business and things, is upon us at present. Application of Analytics, accordingly brings us Descriptive & Diagnostic Analytics currently entering mainstream with most of the companies taking the plunge towards Data Discovery, Mining, Business Intelligence and Data Visualization & Reporting as the first step towards making their company completely data driven and realizing the full potential of Digital Business. The next phase of Predictive Analytics, though lesser in adoption, is actively being pursued as a viable option by three fourth of the relevant businesses as part of the next stage of Digital Evolution. The forward-thinking businesses are but, looking farther, into Prescriptive Analytics, teamed with Digital Evolution to Connected Things, and rise of Self-Learning Algorithms which will pave way for the Digital of the future – Autonomous Systems and Self Learning & Evolving Tech. The evolution will witness a very distinct change. The primacy of historical data will be overtaken by real-time data, generated by a large array of interconnected things.
In the future, as and when the life-cycle of trends keep getting shorter and shorter, predictive forecasting using historical data will keep losing its luster and the new normal would be to quickly understand the trend upon us of that time, analyze it in real-time and gather insights, only to be converted to targeted prescriptive measures, all happening in automated fashion. The staple tech for autonomous systems would be the Internet of Things (IoT) which would be the infrastructure, as well as the customers, since they work, interact, negotiate and decide with zero human intervention. However, the IoT data loses its value if it is not detected and acted upon immediately. That is where streaming analytics platforms come into the picture. Just as the database management opportunity gave birth to a wide range of database technologies and Big Data needed Hadoop, the real-time enterprise and IoT applications need development tools and processing capability to support real-time streaming analytics.
Real-time streaming analytics enables collection, integration, analysis, and visualization of data in real-time without disrupting the working of existing sources, storage, and enterprise systems.
Real-time Streaming analytics is completely different from the traditional analytics approach which involves batch processing of Historical data, which also has been witnessed by Big Data. In traditional analytics, analytic queries are run on batch historical data. Like in case of Hadoop-based batch processing, there is a definitive time-lag that would happen between the collection and storage of data sets, the steps for analysis, and the final stage of reporting. In real-time streaming analytics, the query is always stored and remembered, and every time the data changes, the analysis outcome changes based on the changed data set. This can enable high volumes data processing in little time.
Real-time streaming analysis of data enables certainty of business decisions, with a confidence that subsequent actions are rooted in a relevant, timely understanding of the unfolding events. With the data-waiting time effectively becoming Zero, and nothing getting lost, overseen or outdated, the velocity and volume of data is not an issue. The results of the analytics are translated and fed back into the local systems in real-time, which means the time lag between the incoming data and the outgoing data is extremely low .
Real-time streaming analytics also helps businesses by:
Forrester defines streaming analytics platform as a “software that can filter, aggregate, enrich, and analyze a high throughput of data from multiple disparate live data sources and in any data format to identify simple and complex patterns to visualize business in real-time, detect urgent situations, and automate immediate actions.” Real-time streaming analytics should be sensitive to business concerns such as costs, TTM, & resource demand. At the highest level, it is an “always on” infrastructure that senses all business critical data, events, and transactions accurately, analyzes them, and is linked to appropriate and immediate actions.
In execution, this loop of sense-analyze-act can be achieved through a design built around three core components:
3AI is India’s largest platform for AI & Analytics leaders, professionals & aspirants and a confluence of leading and marquee AI & Analytics leaders, experts, influencers & practitioners on one platform.
3AI platform enables leaders to engage with students and working professionals with 1:1 mentorship for competency augmentation and career enhancement opportunities through guided learning, contextualized interventions, focused knowledge sessions & conclaves, internship & placement assistance in AI & Analytics sphere.
3AI works closely with several academic institutions, enterprises, learning academies, startups, industry consortia to accelerate the growth of AI & Analytics industry and provide comprehensive suite of engage, learn & scale engagements and interventions to our members. 3AI platform have 16000+ active members from students & working professionals community, 500+ AI & Analytics thought leaders & mentors and an active outreach & engagement with 430+ enterprises & 125+ academic institutions.