India's largest platform for AI & Analytics leaders, professionals & aspirants

Sign in

India's largest platform for AI & Analytics leaders, professionals & aspirants

3AI Digital Library

Customer retention using Survival model

Abdul August 16, 2020

Leading Life Insurance Company in Poland

Problem Statement

  • Look out for an approach to retain policies and riders and to set up an early warning system to identify a potential attrition cases to prevent further revenue leakage
  • Loss out on premium on riders which was lost due to rider and policies lapsation.
  • Loss around 369 MN PLN in ANP due to lapsation

Analytics Led Approach

  • After observing Attrition trend in the data over the years an approach was framed to provide a solution to contain further revenue leakage
  • A Cox proportional hazard regression model was built to predict the propensity of policies to survive over a period of time
  • Given are high level process steps which were followed
    • Data Exploration – Combining Policy; Customer; Prospect and Agent Data
    • Data processing and Variable Selection
    • Analytical Model Development
    • Model Output
    • Reports & Insights

Business Impact

  • Identification of product affinities of segments of customers
  • A product recommendation engine to provide new product recommendations (5 each) with their probability of conversion for all 3.5 million lapsed customers was designed
  • Primary users, retention team were provided with insights for customer retention
  • Integrated the attrition prediction with every customer touch point system through a web service and formulated a growth strategy to retain the existing customers as well as grow their business
  • Model output was segmented to optimize the approach to follow the case and provided insights to treat each policy based on the segmented matrix Re-evaluate;Retain;Grow;Protect– for example, Retain is the quadrant high value and high risky policy, retaining such policies will optimize the effort as well as cost.

Critical Success Factors

  • identified attrition and revival opportunity of worth 37 MN PLN for one particular month. 1% retention will result in 3.7 MN PLN recovery in a month.
  • Provided most probable list of policies and riders to be retained on a monthly basis

    3AI Trending Articles

  • MassMutual GCC to come up in Hyderabad

    With 300+ associates and leadership in all functional areas already on-board, MassMutual India is actively hiring for multiple roles in the areas of application development and support, cloud engineering, data science, and analytics, said a statement from the minister’s office. Massachusetts Mutual Life Insurance Company, a US-based leading life insurer, Monday announced opening of a […]

  • Facebook is testing an AI-powered tool to Summarize News

    Facebook has been trying to get a foothold in the news space for many years. Last year, the company launched a dedicated section on its site called Facebook News for users in the US. It also wants to expand this program to other countries such as Brazil, Germany, and India. According to a report from […]

  • Retail Revolution enabled by AI

    Predictive analytics has been used in retail for decades, but it’s within the last few years that advances in technology — namely artificial intelligence — have supercharged the speed, scale and cost at which it is used. This AI-powered retail personalization revolution helps retailers transition into a world where consumers are always connected, more mobile, more social, and have more choices about […]

  • Application of Reinforcement Learning in Supply Chain

    Author: Anindya Bera, Senior Manager – Anaytics, Genpact A supply chain is a complex network of individuals and agents who exchange materials or information in a business ecosystem. The items which are used on day-to-day basis are created by a global collaboration between suppliers, manufacturers, and logistics carriers. What makes this complex? It is the […]